
Multi-Task Downloading for P2P-VoD: An
Empirical Perspective

Tieying Zhang∗, Zhenhua Li†, Xueqi Cheng‡, Xianghui Sun§
∗Institute of Computing Technology, Chinese Academy of Sciences

Email: zhangtiey@software.ict.ac.cn
†Department of Computer Science and Technology, Peking University

Email: lzh@net.pku.edu.cn
‡Institute of Computing Technology, Chinese Academy of Sciences

Email: cxq@ict.ac.cn
§China Telecom Group Corporation

Email: xianghui-sun@chinatelecom.com

Abstract—For current P2P-VoD systems, three fundamental
problems exit in user experience: exceedingly large startup delay,
long jump latency, and poor playback continuity. These problems
primarily stem from lack of media data. In this paper, we propose
Multi-Task Downloading with Bandwidth Control (MTD(BC)),
an efficient and practical mechanism to prefetch media data.
In MTD, a user can download multiple videos in parallel with
its current viewing, which significantly decreases video switching
delays. However, MTD brings a serious problem: downloading
“other” tasks could impede the playback performance of the
current viewing, especially in low-bandwidth network. This
problem is solved through our design of bandwidth control. To
our knowledge, we are the first to propose MTD with bandwidth
control for P2P-VoD and conduct empirical evaluations in the
real-world system. The running results show that MTD(BC)
achieves better streaming quality than the traditional method.
In particular, our mechanism reduces 75% of startup delay and
36% of jump latency in low-bandwidth network with high system
scalability.
Index Terms—Peer-to-Peer, Video-on-Demand, Data Schedule,

User Experience, System Scalability

I. INTRODUCTION
With the rapid deployment of broadband access into house-

hold, P2P video-on-demand (P2P-VoD) has become one of
the most popular Internet applications. Several large-scale
industrial P2P-VoD systems have been deployed over the
Internet, such as PPLive [10], PPStream [6] and UUSee [7],
etc. While hundreds of thousands of people began to use such
video service, there still exist three fundamental performance
problems: large startup delay, long jump latency, and poor
playback continuity. Measurement studies of P2P-VoD sys-
tems [8], [10] have shown that the playback continuity has
not been satisfactory enough, and the performance problems
primarily stem from lack of media data. Therefore, how to
efficiently acquire enough data is vitally important.
Currently, a common practice in P2P-VoD is to use Single-

Task Downloading (STD) [6]–[8], [10]. In STD, as shown
in Figure 1(a), only one video (task) is being downloaded
at any time, where the downloading task is also the current
viewing video. Intuitively, STD is a natural idea to download
the viewing video. However, measurements [8], [10] have

indicated that STD has long startup and jump delay which are
typically on the order of 10 - 60 seconds. Particularly, a user
always wants to watch some popular movies consecutively.
For example, the top 3 popular movies are all the favorites
for a user and he will watch them all. The switch delay of 10
- 60 seconds is certainly unacceptable, as users are used to
the delays of less than 3 seconds when switching videos and
channels [15].
Furthermore, lot of bandwidth is idle in STD. Only one

downloading video usually can not make full use of peer
download and upload bandwidth to share media data. Taking
the home network ADSL for example (we refer to this kind of
network as low-bandwidth network), the download bandwidth
is usually 2 - 4 Mbit/s (Mbps) and the bit rate of a video
is 350 Kbps - 500 Kbps for most P2P-VoD systems [6],
[7], [10]. Therefore, only one video being downloaded can
only take about 1/12 - 1/10 of download bandwidth. The
“bandwidth waste” is more serious in high-bandwidth network,
such as ADSL2+ and campus network. ADSL2+ is widely
deployed throughout Europe and North America, and some
other countries in the world [4]. It can be as high as 24 Mbps
downstream and 3.5 Mbps upstream bandwidth [5]. As for
the video bit rate of 500 Kbps, it is only about 1/50 of the
download bandwidth and 1/7 of the upload bandwidth. That
is to say, most of the bandwidth has been wasted in STD.
Triggered by the above observations, in this paper, we

propose a cross-video downloading scheme, which we refer
to as Multi-Task Downloading (MTD). MTD allows the user
to download other videos (tasks) in parallel with his current
viewing video, shown in Figure 1(b). The so-called “other”
tasks are totally decided by the user himself, so they are also
the candidate videos to be played sooner or later. When a peer
switches from the current viewing to the background task, the
startup content has been downloaded on the disk, so the new
video can often be played at once. This advantage significantly
decreasing the startup delays when switching videos.
Our mechanism can also improve the jump latency and

playback continuity. Assume that if the video has been totally
downloaded, any jump latency is 0 second. In our mechanism,

2010 16th International Conference on Parallel and Distributed Systems

1521-9097/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPADS.2010.11

484

……

These background downloading
videos will be played later

 (a). Single-Task Downloading (STD)

Tas k (The only downloading video)

The playing video

Disk

 (b). Multi-Task Downloading (MTD)

The playing video

Tas k 2Tas k 1 Tas k 3

Disk

Fig. 1. STD vs. MTD.

when a user starts to watch the background video, the video
data has been totally or partially cached on the disk. When this
user jumps to a new position in the video, the data is likely to
be cached. Therefore, MTD can decrease the jump latency to
some extent and the already prefetched data can also improve
the playback continuity.
The idea of MTD is straightforward, but why such simple

idea does not appear in the current P2P-VoD systems? The
major concern about MTD is that downloading multiple tasks
could impede the playback performance of the current viewing
video, especially in low-bandwidth network. The problem
stems from two reasons:
1) The download bandwidth of the peer is depletable. The

parallel downloading in MTD could run out of download
bandwidth and make the current viewing discontinuous. For
a peer, its multiple tasks share its depletable download band-
width. If there are a lot of tasks being downloaded in parallel,
the download speed of the current viewing video can not
be guaranteed. We call this phenomenon local bandwidth
competition.
2) The total upload bandwidth of the suppliers is depletable.

For the whole system, downloading multiple tasks could
cause the aggregate requirements larger than aggregate supply.
According to work [9], [11], in order to guarantee the QoS for
the downloading streams, a P2P-VoD system should guarantee:

n∑

i=1

di ≤ us +
n∑

i=1

ui (1)

where di is the bit rate of the downstream of peer i, n is
the number of peers exchanging media data, us is the server
upload capacity, and ui is peer i’s upload capacity. If a peer
can download multiple tasks in parallel, this could greatly
increase

n∑
i=1

di of the system, while
n∑

i=1

ui is changeless. When
n∑

i=1

di is larger than us+
n∑

i=1

ui (us is a relative small constant),

the QoS for the downloading streams can not be guaranteed.
We call this phenomenon global bandwidth imbalance.
In this paper, we solve this problem through the design of

bandwidth control. Our contributions can be summarized as
follows:
1) We propose a simple and efficient cross-video download-
ing scheme to decrease startup delays, which we refer

to as Multi-Task Downloading (MTD). Using MTD,
besides the current viewing video, a user can also select
some candidate videos to download in the background.
Because of the already prefetched data, the candidate
videos can be played immediately without delay.

2) Based on theoretical analysis, we design a bandwidth
control mechanism to solve the problem involving in
MTD. Through this mechanism, MTD is practical to be
deployed in the real-world system.

3) We evaluate the performance of MTD via extensive
experiments in our real-world system, CoolFish [1].
CoolFish has been deployed over 20 provinces in China.
It has received over 4.8 million user visits in the last
20 months and the number of recent daily visits has
exceeded 7000.

To our knowledge, we are the first to propose MTD with
bandwidth control into P2P-VoD and implement it in the real-
world system.
The rest of this paper is organized as follows. Section 2

describes our idea. Section 3 evaluates MTC’s performances
in CoolFish. Section 4 reviews the related work. Finally, in
Section 5, we conclude this paper.

II. MTD WITH BANDWIDTH CONTROL
A. Basic Idea Based on Observations
Actually, we implement STD mechanism in the first version

of CoolFish, just like most commercial P2P-VoD systems.
Then we conduct a basic measurement of bandwidth utilization
of the system. In CoolFish, 80% users are from CSTNet as
shown in Table 1. Our measurement mainly focuses on these
users. They have the download and upload capacity of 24Mbps
and 3.5Mbps respectively [2], the same as ADSL2+. We record
the average download and upload speed every 1 minute. Figure
2 represent the bandwidth utilization over 24 hours. We can
see that the bandwidth utilization of both download and upload
are very low. Even in hot time (from 8:00 to 22:00), STD
can only utilizes 15% download bandwidth and 20% upload
bandwidth in average. This phenomenon inspires us to design
a more reasonable mechanism to make full advantage of peer’s
bandwidth.
Multi-Task Downloading is a natural idea to utilize the

free bandwidth. In MTD, besides the current viewing video,
a user can also select candidate videos downloading in the

485

0 2 4 6 8 10 12 14 16 18 20 22 24
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (hour)

B
an

dW
id

th
 u

til
iz

at
io

n

STD−Downlaod
STD−Upload

Fig. 2. Bandwidth utilization in STD.

background. As shown in Figure 1(b), task1 is the current
playing video, and the other tasks being downloaded in the
background are selected by the user.
Some people might ask what videos are selected for back-

ground download. The most favorable way is to predict which
video a user will pick next. However, such prediction is
difficult when there are many channels (videos) as verified
in work [13]. Instead, in our method the background tasks
are totally decided by user himself. It is imaginable that these
background tasks are selected according to the user’s interest.
Thus, these videos will be played sooner or later. When the
user switches video, because we already prefetched the data,
it can be played immediately without delay.

B. Bandwidth Control
Our basic idea is simple and straightforward. But why

such simple idea does not appear in the current P2P-VoD
systems? The major concern about MTD is that downloading
”multi” tasks could impede the playback performance of
the current viewing, especially in low-bandwidth network. In
this section, we design bandwidth control to guarantee the
playback continuity of the current viewing. Intuitively, we
should limit the download speed of the background tasks. But
how to get the upper bound of the ”limit”? Our main task
in bandwidth control is to determine the upper bound of the
background download speed. To this end, we introduce the
following notations:
n: the total number of peers;
pi: the i-th peer (i=1, 2, ..., n);
ri: the bit rate of pi’s current viewing;
di: the download capacity of pi;
ui: the upload capacity of pi;
us: the upload bandwidth of the server;
There exit two kind of downloading tasks: the current

viewing task and the background tasks. Therefore, we divide
the total downloading speed of into:
dV iew

i
: the download speed of pi’s current viewing;

dDown

i
: the download speed of pi’s background tasks;

UBdDown

i
: the upper bound of dDown

i
;

As explained in Section 1, two reasons should be considered
to solve the problem: local bandwidth competition and
global bandwidth imbalance. In this section, we design
bandwidth control for these two aspects.
1) Bandwidth Control for “local bandwidth competition”:

For local bandwidth competition, it is easy to get the upper
bound of the “limit”. In order to guarantee the bit rate of pi’s
current viewing, the upper bound of the background download
speed is :

UBdDown

i
= di − ri (2)

2) Bandwidth Control for “global bandwidth imbalance”:
Usually the default value of is a relative small value for a P2P
system. In this case, we define as a constant number c. From
the Formula (1), we have:

n∑

i=1

di ≤ c+

n∑

i=1

ui (3)

As mentioned above, every peer has two kind of di: dV iew
i

and dDown

i
. Then Formula (2) is equal to:

n∑

i=1

dV iew

i +

n∑

i=1

dDown

i ≤ c+

n∑

i=1

ui (4)

Subject to:
dV iew

i ≥ ri (5)

From Formula (3) and (4) we have:
n∑

i=1

dDown

i ≤ c+

n∑

i=1

ui−

n∑

i=1

dV iew

i ≤ c+

n∑

i=1

ui−

n∑

i=1

ri (6)

From Formula (5), we get the upper bound for all peers’
background speed:

UB
n∑

i=1

dDown

i
= c+

n∑

i=1

ui −

n∑

i=1

ri (7)

Next, we need to determine the upper bound value for each
peer.
Because every peer has a different upload capacity, the

download speed should also have the corresponding ability
in order to share the media data. Therefore, from Formula (6)
we can determine the upper bound of as:

UBddown

i
=

(c+
n∑

i=1

ui −
n∑

i=1

ri) · ui

n∑
i=1

ui

(8)

where ui

n∑

i=1

ui

is the share ability proportion of pi.

486

3) Bandwidth Control in Practical System: To sum up, we
get the upper bound of background download speed for each
peer:

UBddown

i
= Min{di − ri,

(c+
n∑

i=1

ui −
n∑

i=1

ri) · ui

n∑
i=1

ui

} (9)

The value of UBddown

i
is computed by a tracker, and is

updated to the peers every once in a while. One immediate
concern for the bandwidth control design is its update over-
head. Actually, after UBddown

i
is computed by the tracker, it

is not updated to peers by broadcast. Instead, this value is
capsulated in the normal control messages, and such kind of
message only transmits every once in a while. For example, in
our CoolFish system, the interactive messages transmit every
2 minutes. Therefore, the overhead brought by the bandwidth
control is very low. This will be proved by the experiments.
In the following sections, we call MTD with bandwidth

control as MTD(BC), and the simple MTD without bandwidth
control as MTD(no-BC).

III. PERFORMANCE EVALUATION
The evaluation of MTD is based on our real-world P2P-VoD

system, CoolFish. In this section, we first give an overview of
the CoolFish system. Then, the metrics and configuration are
presented. Finally, we discuss the result in detail.

A. System Overview
CoolFish is mainly deployed in China Science & Tech-

nology Network (CSTNet), a nationwide network connecting
about 200 research institutes of the Chinese Academy of
Sciences and four campuses with more than 58,000 students.
It has been very popular since released in CSTNet for most
communication traffic locates in the same ISP according to
our observation. From Oct. 2008 to Mar. 2010, there have
been over 4.2 million user visits and the number of recent
daily visits has exceeded 7000. Its users mainly come from
4 ISPs in China: CSTNet, CERNet, Telecom and Netcom.
Our measurements show that 80% users come from CSTNet
and CERNet. The remaining 20% users belong to Telecom
and Netcom. At hot time, there are over 700 simultaneous
viewers. CoolFish is able to support an average video bit rate
of 700Kbps, which is about 50% higher than that of most
commercial P2P-VoD systems with a video bit rate less than
450Kbps [6], [7]. Table I presents the detailed log statistics of
the system.
CoolFish is a mesh-based network just like BitTorrent sys-

tem. The implementation of CoolFish is based on our previous
P2P VoD system [17] which only utilized the STD mecha-
nism. Then we tried MTD(no-BC) in the second version, and
MTC(BC) in the third one with over 80,000 lines of C++
codes in total. To guarantee the QoS, a media content server
is deployed in CoolFish to provide more than 1,500 videos. A
peer will require data from content server if it can not get the
data from other peers. When a peer joins the system, it can

TABLE I
COOLFISH SYSTEM STATISTICS FROM OCT. 2008 TO JUN. 2010.

Parameter Value
Total number of visited users ≈4,800,000
Peak number of online users > 700
Server upload bandwidth 100 Mbps
Number of videos > 1000

Average video bit rate 700 Kbps
Average video length 1.2 hours

Average disk space contribution per peer 3 GB
Percentage of CSTNet and CERNet users 80%

Percentage of NAT users 22%

also share its local videos. To simplify the cache system, we
do not restrict the cache capacity in CoolFish. Which video
should be deleted is totally decided by user himself. There is
another server in the system, Tracker, which is responsible for
the control messages reported from peers every two minutes.
The peers are distributed over 20 provinces in China, shown
in Figure 3 from Google Analytics report [3].

Visits

1 258,361

Fig. 3. CoolFish user distribution in China (from google analytics).

B. Metrics and Configurations
We evaluate the performance of MTD from two aspects:

user experience and system scalability. User experience in-
cludes three metrics: 1) playback continuity, 2) startup delay
and 3) jump latency. System scalability mainly refers to 4)
server stress and 5) control overhead. P2P-VoD systems pursue
to achieve high system scalability with a guarantee of user
experience.
1) Playback continuity: the ratio of pieces that arrive before
or on playback deadlines.

2) Startup delay: the time from the moment a user sends
a request for a video to the moment it starts playing
the required video, after buffering 20-second data (20-
second is an empirical value in CoolFish).

3) Jump latency: the time from the moment a user launches
a jump operation to the moment it starts playing the
video from the jump position after buffering 20-second
data.

4) Server stress: the upload speed required at the media
server to support the whole system. We use the peak
stress to examine the system scalability.

487

5) Control Overhead: all control messages between peers
and tracker, including the messages of joining, startup
a video, jump to new position, data scheduling (and
bandwidth control messages for MTD(BC)).

Up to now, there have been three versions of downloading
scheme on CoolFish: 1) STD, 2) MTD without bandwidth
control (MTD(no-BC)), and 3) MTD with bandwidth control
(MTD(BC)). STD was used in the first implementation of
CoolFish. We separate MTD(no-BC) and MTD(BC) in the
second and third version of CoolFish in order to study the
performance of bandwidth control.
In order to evaluate the three downloading schemes, we

collect two-month log data for each scheme separately. From
Figure 4, we can see that the system scales are similar for
the three versions in these time intervals (we only represent
the system scale in one week for clarity). In order to further
guarantee the fairness of comparison, we did not add any other
functions or improvements into the system.

0 1 2 3 4 5 6 7
0

100

200

300

400

500

600

700

800

Running time (day)

O
nl

in
e

nu
m

be
r

STD
MTD(no−BC)
MTD(BC)

Fig. 4. Online number of peers over running time.

In CoolFish, the 80% users are in CSTNet, whose band-
width ability is similar to ADSL2+ [2]. That is to say,
there users have 3.5Mbps upload bandwidth. We call these
users high-bandwidth users. On the other hand, the rest 20%
users are in ASDL, we call these users low-bandwidth users.
Because the bandwidth between these two kinds of users
differs greatly, in order to be more accurate, we conduct
the evaluations for them separately. How to know the upload
bandwidth seems difficult for individual, but video providers
can obtain it from the local ISPs. In our system, the upload
bandwidth is from the ”topology information table”, which
is maintained by China Telecom. Every item in the table is
a pair of {ip, upload bandwidth}. For the peers behind the
same NAT, we consider each peer’s upload bandwidth as the
average value, by dividing the NAT bandwidth equally.

C. Evaluation results
1) Playback continuity: We track the playback continuity

with different number of online peers. For high-bandwidth
users (Figure 5), all the three curves show high playback
continuity between 0.9 - 1.0. Because the network bandwidth
is sufficient, the required data can be obtained in time. In
contrast, for low-bandwidth users (Figure 6), the results differ
greatly. STD and MTD(BC) still has high playback continuity
of more than 0.9, but MTD(no-BC)’s continuity is extremely
low (only around 0.7). The reason is 1) the parallel down-
loading in MTD(no-BC) runs out of bandwidth and makes
the current viewing video discontinuous; 2) without bandwidth
control, MTD could lead to the aggregate requirements larger
than aggregate supply. On the other hand, MTD(BC) performs
event better than STD.

0 20 40 60 80 100 120 140 160
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Number of online peers

P
la

yb
ac

k
co

nt
in

ui
ty

STD
MTD(no−BC)
MTD(BC)

Fig. 5. Playback continuity for high-bandwidth users.

2) Startup delay: Figure 7 shows the PDFs of startup delay
for high-bandwidth users. We observe that, MTDs have a big
advance over STD. For both MTD(no-BC) and MTD(BC), the
majority of startup delays are around 0 to 1 second (77% for
MTD(no-BC), 84% for MTD(BC)). That means using MTDs,
users can startup the video nearly at once. The reason is that
MTDs can prefetch multiple videos and when users launch
these already prepared videos, the startup delay is certainly
small. However, for STD the startup delays of 0 to 1 second
only hold 4%. The statistics in Table II describe the results in
detail.
For low-bandwidth users (Figure 8), MTD(BC) still has

low startup delays (0s - 1s hold 72%). However, MTD(no-
BC) performs not as well as in high-bandwidth. This is
because multi-task without bandwidth control could affect the
current viewing, but under high-bandwidth this problem can
be alleviated to trivial. That is why the results are so different.
3) Jump latency: For high-bandwidth (Figure 9), more than

50% jumps only need a latency of 0s to 1s for both MTD(no-

488

0 20 40 60 80 100 120 140 160
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of online peers

P
la

yb
ac

k
co

nt
in

ui
ty

STD
MTD(no−BC)
MTD(BC)

Fig. 6. Playback continuity for low-bandwidth users.

0~1 2~4 5~8 9~12 13~15
0

10

20

30

40

50

60

70

80

90

100

Startup delay (second)

P
D

F
(%

)

STD
MTC(no−BC)
MTC(BC)

Fig. 7. Startup delay for high-bandwidth users.

BC) and MTD(BC). largely decreasing the jump latency than
STC. The reason is MTD downloads not only the startup data
but also the left data of the video.
For low-bandwidth users, different results are illustrated

in Figure 10. MTD(no-BC) performs the worst in the three
schemes, only about 2% jumps fall into 0s - 1s. Again this is
because the parallel downstreams make the bandwidth insuffi-
cient under low-bandwidth environment. However, MTD(BC)
still have 24% jumps falling into 0s - 1s.
4) Sever stress: There is a content server with 100Mbps

upload bandwidth. If peer has not received required data when
time out occurs, it will ask server to send data. Figure 11 shows
the results. MTD(no-BC) performs the worst. The reason is the

0~1 2~4 5~10 11~16 17~23
0

10

20

30

40

50

60

70

80

90

Startup delay (second)

P
D

F
(%

)

STD
MTD(no−BC)
MTD(BC)

Fig. 8. Startup delay for low-bandwidth users.

0~1 2~4 5~8 9~13
0

10

20

30

40

50

60

70

80

Jump latency (second)

P
D

F
(%

)
STD
MTD(no−BC)
MTD(BC)

Fig. 9. Jump latency for high-bandwidth users.

higher delays of startup and jump and poor playback continu-
ity, leading to the urgent requests time out. But an interesting
observation is that MTD(BC) achieves lower server stress than
STD. Intuitively, multiple downstreams should bring more
requests to server, leading high server stress. However, for
MTD(BC), besides the bandwidth control, it provides more
resources. Therefore, a peer has more candidates to select.
5) Control overhead: Besides the content server, there is

another server in the system, Tracker. Tracker is responsible
for the control message with all peers. In order to evaluate
the update overhead of MTD(BC), we record all the messages
between peers and Tracker. As shown in Figure 12, the control
over head of the three schemes all increases linearly with the

489

TABLE II
AVERAGE VALUES OF EVALUATION RESULTS OF STD, MTD(NO-BC) AND MTD(BC).

High-bandwidth users Low-bandwidth users
Metrics STD MTD(no-BC) MTD(BC) STD MTD(no-BC) MTD(BC)

Avg startup delay 11.7s 2.7s 2.8s 14.4s 11.2s 3.6s
Avg jump latency 7.8s 3.3s 3.8s 9.8s 11.9s 6.3s

Avg playback continuity 0.98 0.98 0.98 0.95 0.7 0.97

0~1 2~4 5~8 9~13 14~18
0

10

20

30

40

50

60

70

80

Jump latency (second)

P
D

F
(%

)

STD
MTD(no−BC)
MTD(BC)

Fig. 10. Jump latency for low-bandwidth users.

50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

Number of online peers

S
er

ve
r s

tre
ss

 (M
bp

s)

STD
MTD(no−BC)
MTD(BC)

Fig. 11. Server stress.

number of peers, and there is no big difference among them.
This is because the update messages are not sent by broadcast.
Instead, they are capsulated in the normal control messages,
and only transmits every once in a while. In our CoolFish
system, the interval is 2 minutes. Therefore, the overhead

brought by the bandwidth control is low.

50 100 200 300 400 500
0

2

4

6

8

10

12

14

16

18

20

Number of peers

C
on

tro
l o

ve
rh

ea
d

(K
bp

s)

STD
MTD(no−BC)
MTD(BC)

Fig. 12. Control overhead.

D. Analysis
As can be seen from the measurements, in high-bandwidth

environment there is no large difference between MTD(no-
BC) and MTD(BC), and they both performs largely better
than STD in startup delays and jump latency. But the results
are different in low-bandwidth environment. MTD(no-BC)
performs the worst while MTD(BC) is still the best with the
help of bandwidth control.
In practice, because a large part of normal household users

are in low-bandwidth, MTD(no-BC) is not practical for the
commercial P2P-VoD systems. On the contrary, MTD(BC) has
good performance in both high-bandwidth and low-bandwidth.
Thus MTD(BC) is a real practical mechanism.
Besides, one may argue the cache scheme in our CoolFish

system. For the current P2P-VoD systems, they usually con-
tribute a part of peer’s disk space (usually 1GB) [6], [7], [10]
to cache the content it has downloaded. However, how to
arrange such 1GB storage is a challenging topic, and there
has been no effective method yet. Instead, we do not restrict
the size of cache in CoolFish system. The video which should
be deleted is totally decided by user himself. This strategy not
only simplifies the system design but also contributes abundant
user storage. We can see from Table 1 that in CoolFish every
user contributes 3GB storage, while other existing P2P-VoD
systems [6], [7], [10] only contribute 1GB storage.

490

IV. RELATED WORK

P2P download and cache scheme has attracted lots of
research efforts. In [14], Wu et al. designed an algorithm to
adjust the supply of server bandwidth to different channels. In
[12], Gan et al. proposed an incentive mechanism to stimu-
late peers within spare bandwidth in resource-rich channels
to help peers within resource-poor channels. However, the
above works address the problems in P2P-live streaming. In
live streaming, the bit rate for a given channel is constant
which is different from that in VoD. Therefore, the methods
of bandwidth allocation proposed in [14] and [12] are not
suitable for P2P-VoD. VMesh [16] proposed a segment cache
mechanism for P2P-VoD based on video popularity. However,
the additional cache content is not selected by user it-self and
can not improve the startup delays.
The closest works to ours are [8], [10] and [15]. The

study in [8], [10] highlights the importance of caching and
compares two cache mechanisms named SVC (single-video
cache) and MVC (multi-video cache). Nevertheless, they are
totally different from STD and MTD. SVC and MVC focus
on cache mechanisms while ours aim at downloading schemes.
SVC means a peer only caches the current viewing video on
his disk, while MVC can also cache multiple videos which
have been watched before. Such function of MVC is already
included in our schemes. As mentioned in Section 3.4, we
cache all the videos in the disk. However, what we are ad-
dressing are not cache mechanisms but downloading schemes.
In [8], [10], the downloading task of MVC is still the current
viewing video, which is largely different from ours. And the
comparison results of SVC and MVC are based on trace-driven
simulations while ours is conducted using a real deployed
P2P-VoD system. [15] presents a live streaming design: VUD
(view-upload decoupling) and conducts comparisons with ISO
(isolated-channel). VUD focuses on bringing stability to multi-
channel systems. It strictly decouples peer downloading from
uploading. That means a peer will receive some content it do
not need but uploads to other peers. That differs from ours. In
our design, the content downloaded is what the peer will watch
later. Further more, VUD is designed for P2P live streaming
rather than VoD. In a P2P live streaming system, the users
viewing the same channel are synchronous and cannot jump
in the channel, while P2P-VoD allows asynchronization and
jump operations.

V. CONCLUSION
In this paper, we present MTD with bandwidth control

(MTD(BC)), an efficient and practical downloading scheme
for P2P-VoD system. By prefetching data of multiple videos,
a majority of startup delays can be decreased to 0s - 1s.
With the considerate design of bandwidth control, MTD is
practical in both high-bandwidth and low-bandwidth network.
Using a real-world P2P-VoD system, we conduct an in-depth
analysis of STD, MTD(no-BC) and MTD(BC). We find that
compared with the traditional method of STD, MTDs have
a distinct advantage in high-bandwidth networks. However,
MTD(no-BC) underperforms STD in low-bandwidth network.

In contrast, compared with STD, MTD(BC) can reduce more
than 75% of startup delay on average, and 36% of jump
latency in low-bandwidth network. Furthermore, MTD(BC)
can achieve less sever stress with low control overhead. We
believe that the results and analysis are helpful to the further
P2P-VoD study.

ACKNOWLEDGMENT
This research is supported by the National Basic Research

Program of China (Grant No.2011CB302305) and the National
Natural Science Foundation of China (Grant No. 60873051
and No. 60933005).

REFERENCES
[1] CoolFish web site. http://www.cool-fish.org.
[2] CSTNet billing rules. http://www.cstnet.net.cn/bill.jsp.
[3] Google Analytics. http://www.google.com/analytics.
[4] http://en.wikipedia.org/wiki/itu g.992.5.
[5] http://www.itu.int/rec/t-rec-g.992.5/en.
[6] PPStream web site. http://www.ppstream.com.
[7] UUSee web site. http://www.uusee.com.
[8] B. Cheng, X. Liu, Z. Zhang, H. Jin, L. Stein, and X. Liao. Evaluation

and optimization of a peer-to-peer video-on-demand system. Journal of
Systems Architecture, 54(7):651–663, 2008.

[9] Y. Chu, S. Rao, S. Seshan, and H. Zhang. Enabling conferencing
applications on the internet using an overlay muilticast architecture.
In Proceedings of the 2001 conference on Applications, technologies,
architectures, and protocols for computer communications, page 67.
ACM, 2001.

[10] Y. Huang, T. Fu, D. Chiu, J. Lui, and C. Huang. Challenges, design and
analysis of a large-scale p2p-vod system. ACM SIGCOMM Computer
Communication Review, 38(4):375–388, 2008.

[11] R. Kumar, Y. Liu, and K. Ross. Stochastic fluid theory for P2P streaming
systems. In IEEE INFOCOM 2007. 26th IEEE International Conference
on Computer Communications, pages 919–927, 2007.

[12] G. Tan and S. Jarvis. Inter-overlay cooperation in high-bandwidth over-
lay multicast. In Parallel Processing, 2006. ICPP 2006. International
Conference on, pages 417–424, 2006.

[13] J. Wang, J. Pouwelse, J. Fokker, and M. J. T. Reinders. Personalization
on a peer-to-peer television system. Multimedia Tools and Applications,
pages 89–113, 2007.

[14] C. Wu, B. Li, and S. Zhao. Multi-channel live P2P streaming:
Refocusing on servers. In Proceedings of IEEE INFOCOM, 2008.

[15] D. Wu, Y. Liu, and K. Ross. Queuing network models for multi-channel
p2p live streaming systems. In Proceedings of IEEE INFOCOM, 2009.

[16] W. Yiu, X. Jin, and S. Chan. VMesh: Distributed segment storage for
peer-to-peer interactive video streaming. IEEE journal on selected areas
in communications, 25(9):1717–1731, 2007.

[17] T. Zhang, J. Lv, and X. Cheng. Mediacoop: Hierarchical lookup for
p2p-vod services. In ICPP ’09: Proceedings of the 2009 International
Conference on Parallel Processing, pages 486–493, Washington, DC,
USA, 2009. IEEE Computer Society.

491

